Part Number Hot Search : 
BPC3504 NTE3097 C68000 H2920 AN12941A F71872FG 1771101 5NCB10KE
Product Description
Full Text Search
 

To Download IRG4PC40UD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD 9.1467D
IRG4PC40UD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
* UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 * IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations * Industry standard TO-247AC package
C
UltraFast CoPack IGBT
VCES = 600V
G E
VCE(on) typ. = 1.72V
@VGE = 15V, IC = 20A
n-ch an nel
Benefits
* Generation -4 IGBT's offer highest efficiencies available * IGBT's optimized for specific application conditions * HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing * Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
600 40 20 160 160 15 160 20 160 65 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m)
Units
V
A
V W
C
Thermal Resistance
Parameter
RJC RJC RCS RJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-------------------------
Typ.
----------0.24 ----6 (0.21)
Max.
0.77 1.7 -----40 ------
Units
C/W
g (oz)
4/17/97
IRG4PC40UD
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter Min. Collector-to-Emitter Breakdown Voltage 600 V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage ---VCE(on) Collector-to-Emitter Saturation Voltage ---------VGE(th) Gate Threshold Voltage 3.0 VGE(th)/TJ Temperature Coeff. of Threshold Voltage ---gfe Forward Transconductance 11 ICES Zero Gate Voltage Collector Current ------VFM Diode Forward Voltage Drop ------IGES Gate-to-Emitter Leakage Current ---V(BR)CES Typ. ---0.63 1.72 2.15 1.7 ----13 18 ------1.3 1.2 ---Max. Units Conditions ---V VGE = 0V, IC = 250A ---- V/C VGE = 0V, IC = 1.0mA 2.1 IC = 20A VGE = 15V ---V IC = 40A See Fig. 2, 5 ---IC = 20A, TJ = 150C 6.0 VCE = V GE, IC = 250A ---- mV/C VCE = V GE, IC = 250A ---S VCE = 100V, IC = 20A 250 A VGE = 0V, VCE = 600V 3500 VGE = 0V, VCE = 600V, TJ = 150C 1.7 V IC = 15A See Fig. 13 1.6 IC = 15A, TJ = 150C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. ---------------------------------------------------------------------------------Typ. 100 16 40 54 57 110 80 0.71 0.35 1.10 40 52 200 130 1.6 13 2100 140 34 42 74 4.0 6.5 80 220 190 160 Max. Units Conditions 150 IC = 20A 25 nC VCC = 400V See Fig. 8 60 VGE = 15V ---TJ = 25C ---ns IC = 20A, VCC = 480V 165 VGE = 15V, RG = 10 120 Energy losses include "tail" and ---diode reverse recovery. ---mJ See Fig. 9, 10, 11, 18 1.5 ---TJ = 150C, See Fig. 9, 10, 11, 18 ---ns IC = 20A, VCC = 480V ---VGE = 15V, RG = 10 ---Energy losses include "tail" and ---mJ diode reverse recovery. ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 --- = 1.0MHz 60 ns TJ = 25C See Fig. 120 TJ = 125C 14 IF = 15A 6.0 A TJ = 25C See Fig. 10 TJ = 125C 15 VR = 200V 180 nC TJ = 25C See Fig. 600 TJ = 125C 16 di/dt 200A/s ---A/s TJ = 25C ---TJ = 125C
IRG4PC40UD
30 D u ty c ycle: 5 0% T J = 1 2 5 C T sin k = 90 C Ga te d rive a s sp e cified Tu rn -on lo sses in clu de effe cts of reve rse rec ov ery P ow e r D issipa tion = 3 5W 6 0 % o f ra te d v o lta g e
Load Current (A)
20
10
0 0.1 1 10
A
100
f, F re q u e n cy (kH z )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
100
TJ = 25C T J = 150C
TJ = 150C
T J = 25C
10
10
1 0.1 1
V G E = 15V 20s PULSE WIDTH A
10
1 4 6 8
V C C = 10V 5s PULSE WIDTH A
10 12
VC E , Collector-to-Emitter Voltage (V)
VG E , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
IRG4PC40UD
40
V C E , Collector-to-Emitter Voltage (V)
V G E = 15V
2.5
Maximum DC Collector Current (A)
V G E = 15V 80s PULSE WIDTH I C = 40A
30
2.0
20
I C = 20A
1.5
10
I C = 10A
0 25 50 75 100 125
A
150
1.0 -60 -40 -20 0 20 40 60 80 100 120
A
140 160
TC , Case Temperature (C)
T J , Junction Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
1
Therm al Response (Z th JC )
D = 0 .5 0
0.2 0
0 .1
0.1 0 0 .05 SIN G LE P UL SE (T H ER M A L R E SP O NS E )
N o te s: 1 . D u ty fa c to r D = t 1 /t 2
PD M
t
1 t2
0.0 2 0.0 1
0 .0 1 0 .0 0 0 0 1
2 . P e a k TJ = P D M x Z th J C + T C
0 .0 0 0 1
0 .0 0 1
0 .0 1
0 .1
1
10
t 1 , R ectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
IRG4PC40UD
4000 20
V GE , G a te-to -Em itter V oltage (V )
V GE = C ie s = C re s = C oes =
0V, f = 1M H z C ge + C gc , Cc e S H O R T E D C gc C ce + C gc
V C E = 40 0 V IC = 20A
16
C , C apa cita nce (pF )
3000
C ie s
12
2000
C o es C re s
8
1000
4
0 1 10
A
100
0 0 20 40 60 80 100
A
120
V C E , C ollector-to-Em itter V olta ge (V)
Q g , Total G ate C ha rge (nC )
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.8
Total Switching Losses (mJ)
VC C VG E TC IC
= 480V = 15V = 25C = 20A
10
R G = 10 V G E = 15V V C C = 480V I C = 40A
Total Switching Losses (mJ)
1.6
I C = 20A
1
1.4
I C = 10A
1.2
1.0 0 10 20 30 40 50
A
60
0.1 -60 -40 -20 0 20 40 60 80 100 120 140
A 160
R G , Gate Resistance ( )
TJ , Junction Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
IRG4PC40UD
5.0 4.0
I C , C ollector-to-E m itter Current (A )
Total Switching Losses (mJ)
RG TC V CC V GE
= 10 = 150C = 480V = 15V
1000
VG E E 2 0V G= T J = 125 C
100
3.0
S A FE O P E R A TIN G A R E A
2.0
10
1.0
0.0 0 10 20 30 40 50
A
1 1 10 100 1000
I C , Collector-to-Emitter Current (A)
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantan eous Forward C urren t - I F (A )
10
TJ = 15 0 C TJ = 12 5 C TJ = 2 5 C
1 0.8 1.2 1.6 2.0 2.4
Fo rwa rd V o ltag e Drop - V FM (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
IRG4PC40UD
100 100
V R = 200V T J = 125C T J = 25C
80
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
I F = 3 0A
t rr - (ns)
I F = 30A
60
I IR R M - (A )
10
I F = 15 A
I F = 15A
40
I F = 5.0A
I F = 5.0A
20 100
di f /dt - (A/s)
1000
1 100
1000
d i f /d t - (A / s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
800
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
600
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
I F = 3 0A
di(rec)M /d t - (A /s)
Q R R - (nC )
400
I F = 5 .0A I F = 1 5A I F = 30 A
I F = 15 A I F = 5 .0A
200
0 100
d i f /d t - (A / s)
1000
100 100
1000
di f /dt - (A /s)
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
IRG4PC40UD
90% Vge +Vge
Same ty pe device as D .U.T.
Vce
Ic 80% of Vce 430F D .U .T.
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
t1 + 5 S V c e ic d t t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id d t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 E o n = V ce ie d t t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d id d t t3
t1
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
IRG4PC40UD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000 F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
IRG4PC40UD
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10H, RG= 10 (figure 19) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
Case Outline TO-247AC
3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 )
-A5 .5 0 (.2 17 )
-D-
1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B-
M
DBM
5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4
NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C .
2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 1 2 3
2X
5.5 0 (.2 1 7) 4.5 0 (.1 7 7)
-C-
LEAD 1234-
A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R
*
1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 )
4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 )
*
3X C AS
2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X
LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER
3X
1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 )
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P)
D im e n s io n s in M illim e te rs a n d (In c h e s )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 4/97


▲Up To Search▲   

 
Price & Availability of IRG4PC40UD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X